

# Biacore™X100 检测蛋白 与核酸相互作用

操作指南



cytiva.com.cn



| 01 | 实验目的         | 03 |
|----|--------------|----|
| 02 | 注释           | 03 |
| 03 | 实验使用机型、试剂和耗材 | 03 |
| 04 | 实验步骤         | 04 |
|    | (一)仪器准备      | 04 |
|    | (二)核酸偶联      | 07 |
|    | (三)样品检测过程    | 08 |
|    |              | 10 |

# Biacore™ X100 检测蛋白与核酸结合操作指南

## 一、实验目的

利用 Biacore<sup>™</sup> X100 与 SA 芯片检测蛋白与核酸结合的动力学数据 ka、kd 和亲和力数据 Kb。 若有大量检测带 biotin 标签的样品待检测,可选择 Biotin CAPture Kit, Series S(货号: 28-9202-34) 来进行检测。本实验使用的核酸为 Lac O1(乳糖操纵序列 O1),由 23 对互补碱基构成的双链 DNA, DNA的5' 端带有生物素化标签,分子量约为 14.5 KD;蛋白为 Lac 1(乳糖操纵阻抑蛋白), 分子量为 39.4 KD。本实验利用 SA 芯片固定生物素化修饰的 Lac O1 双链DNA,Lac 1 蛋白作为分 析物检测其结合的动力学和亲和力数据。

## 二、注释

注意事项:实验前请详细阅读该指南,并准备好相应实验用品。该指南可用于单/双链 DNA、RNA、 MicroRNA 等样品的检测,但具体参数设置仅供类似实验参考,用户须根据实际样品来源、条件、 目的调整各项实验参数。

## 三、实验使用机型、试剂和耗材

1、本实验所用的机型:Biacore<sup>™</sup> X100 ,若为其他机型,请按照对应机型的操作说明进行调整,或咨询 Biacore 产品专家。

2、SA芯片, 货号: BR100398(一片装)、BR100032(三片装), 厂家为 Cytiva。

3、缓冲液: 10 x HBS-EP+ (货号: BR-1006-69), 购买地为 Cytiva。

(也可扫描右侧的二维码选择含上述2/3所有耗材的套餐)

4、Condition 缓冲液:含50 mM NaOH 和1M NaCI 溶液,配制200 µL。

5、Wash 缓冲液:含 50% 异丙醇、50 mM NaOH、1 M NaCl 溶液,配制 200 μL。

6、去离子水(0.22 μm 膜过滤,若纯水仪已含该滤芯,可无需再次过滤直接使用)。

7、无盖 1.5 ml EP 管(货号:BR-1002-87),厂家为 Cytiva。

8、生物素化修饰的核酸:商业化合成的粉末,用去离子水稀释到 100 µg/mL,分装保存在 -20℃。

9、蛋白 lac 1: 母液浓度尽量大于 1μM, 样品体积在 200 μL 以上, 纯度 >80%。(蛋白需要量 可能因亲和力高低而异)。

10、再生溶液: 0.5% SDS。



## 四、实验步骤

(一) 仪器准备

#### 1、开机操作

1) 打开 Biacore<sup>™</sup> X100 系统和电脑的电源开关。Biacore<sup>™</sup> X100 的电源开关位于系统背面的中 心。初始化过程中前面板上的指示灯将全部亮起,当初始化准备就绪时,Power 指示灯处于亮 起状态,Temperature 指示灯处于亮起或闪烁状态,Sensor chip 指示灯处于熄灭或闪烁状态, Run 指示灯处于熄灭状态。

2) 打开Biacore<sup>™</sup> X100 控制软件(Biacore<sup>™</sup> X100 control software), 在登录对话框中, 输入 用户名和密码并单击 OK。运行后软件会自动和主机系统建立连接。

| X- Biacore X100 Login |                                        | <b>×</b>   |
|-----------------------|----------------------------------------|------------|
|                       | Biacore X100 Control<br>Version: 2.0.1 | Software   |
|                       | <u>U</u> ser name:<br>admin            |            |
|                       | Password:                              | ]          |
| Biacore™ X100         |                                        |            |
|                       | Help OK Cancel                         | Options >> |

3) 准备运行缓冲液。量取 50mL 10 x HBS-EP+ buffer、450mL 去离子水(已经 0.22 μm 膜过滤), 混匀后放入 500 mL 缓冲液瓶。

4) 设备开机后,即可使用,无需等待。

2、 缓冲液的放置

1) 将已经配制好的缓冲液放在 Biacore™ X100 系统左侧的托盘上。

2) 将两根缓冲液进液管插入至缓冲液瓶底部,并拧上专用的盖子。

3) 将 500mL 的废液瓶放置在 Biacore™ X100 系统右侧的托盘上,并拧上专用的盖子。

3、芯片的放置

1) 打开仪器前面板上部的芯片舱门,点击工具条中的 🖬 按钮或选择 Tools 菜单中的 Undock Chip 选项,打开芯片舱门。

2) 如果已经有芯片在芯片舱内,点击工具条中的 🐨 按钮或选择 Tools 菜单中的 Undock Chip 选项,完成芯片卸载后会显示 Dock Chip 对话框,同时仪器前面板的传感芯片指示灯会闪烁。 拉出芯片推杆,取出旧的芯片。(若芯片舱中没有芯片,此步直接跳过)

| Biacore X100                     | ×      |
|----------------------------------|--------|
| This will undock the sensor chip |        |
| Help Undock Chip                 | Cancel |

3) 如果使用的是新芯片,选择 New Chip。在 Chip Type 的下拉菜单中选择对应的芯片种类(此 实验为 CM5 芯片),在 Chip Id 中填入和芯片相关的实验信息,Chip Iot No.中可填入芯片批号 (选填)。如果是已经使用过的芯片,请选择 Reuse Chip,并在 Chip Id 下拉菜单中找到与之相 对应的芯片信息。

| C | Oock Chip            |             |                      | ×                |
|---|----------------------|-------------|----------------------|------------------|
|   | New chip             |             | ○ <u>R</u> euse chip |                  |
|   | New chip             |             |                      |                  |
|   | Chip type:           | Custom      |                      | <b></b>          |
|   | Chip <u>i</u> d:     | 211220-0956 |                      |                  |
|   | Chi <u>p</u> lot no: | (optional)  |                      |                  |
|   |                      |             |                      |                  |
|   |                      |             |                      |                  |
|   | <u>H</u> elp         | ]           | [                    | Dock Chip Cancel |

4) 手持芯片,有字的一面朝上。按照芯片上的箭头方向,插入芯片,最后推入芯片推杆,关闭芯片舱门,点击 Dock Chip 完成芯片装载。



5) 点击 Dock Chip 按钮,芯片置入后系统将自动转入待机(Standby)状态。

6) 选择 Tools→Prime 命令,点击 Start。缓冲液会以较高的流速冲洗整个内部的流路 系统,整个过程耗时 6-7 分钟。结束后,点击 Close,系统自动转入待机(Standby) 状态。注意:当系统开机或更换缓冲液后,必须运行 Prime 程序。Prime 时缓冲液会 冲洗整个流路系统,为下一步的实验做好准备。

### 4、放置样品架

1) Biacore<sup>™</sup> X100 的样品架为 Reagent Rack ,如下图所示。



**Reagent Rack** 

2) 点击工具栏 🌑 按钮,或选择 Tool→Eject Rack,等待 Rack Locked 指示灯熄灭,取出样品架。



样品架的取出 / 放入方式

3)将样品架对准卡槽放入样品舱,并确保其与样品架基座贴合良好,表明样品架已经处于正确位 置并锁定。

4) 点击 Load Samples 对话框中的 OK,完成样品舱装载

### (二)实验 Workflow 设置

1) 点击 Create Assay Workflow 下方的 Kinetics/Affinity, 点击打开。在全新窗口, 填写配体 名称 Ligand name, 选择配体类型, 本实验选择 nucleic acid。

| X- admin @ I | X- admin @ Biacore X100 Control Software |                                                                                                  |  |  |  |  |  |  |  |
|--------------|------------------------------------------|--------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| File View    | Tools Window Help                        | p                                                                                                |  |  |  |  |  |  |  |
|              | <b>↓</b>   <i>¥</i>                      |                                                                                                  |  |  |  |  |  |  |  |
| Create Ass   | say Workflow                             | Other Options       Binding Analysis         Wizards                                             |  |  |  |  |  |  |  |
| Quick Filt   | Create Assay Workflow                    | r - Kinetics/Affinity                                                                            |  |  |  |  |  |  |  |
|              | Ligand details<br>Ligand name:           | Preview of recommended Assay Workflow<br>Ligand A                                                |  |  |  |  |  |  |  |
|              | My ligand is                             | a biomolecule with a tagan antibodyanother proteina nucleic acida vesicle/fiposomesomething else |  |  |  |  |  |  |  |

2)选择配体类型后,在出现的 Ligand attachment approach 界面,选择推荐的实验方式,本次 实验选择 Biotinylate ligand and Immobilize on Sensor Chip SA,通过生物素标签将配体捕获至 SA 芯片进行实验(该捕获为不可逆捕获)。

| Ligand details                                                                | Preview of recommended Assay Workflow                                                          |
|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Ligand name: Ligand A<br>My ligand isa nucleic acid                           | Sensor Surface Preparation                                                                     |
| Ligand attachment approach<br>Recommended                                     | Assay<br>Find Sample Conditions<br>Find Regeneration Conditions<br>Run Kinetics/Affinity Assay |
| Assay overview Type of assay: Direct binding analyte ligand Selected chip: SA |                                                                                                |

3)下方的 Assay overview 与右侧的 Preview of recommended Assay Workflow,清晰展现了配体 与分析物的实验方式与实验流程。点击 continue,输入名称点击 Save 保存实验 Workflow 至文 件夹。(名称自行指定,注意本指南中所有要保存的指定文件夹与文件名不可有中文字符)。

#### (三)核酸偶联

1、偶联量计算 根据以下公式可计算目标偶联量

 $\mathbf{R}_{max} = \frac{\mathbf{analyte} \, \mathbf{M} \mathbf{W}}{\mathbf{ligand} \, \mathbf{M} \mathbf{W}} \times \mathbf{R}_{\mathbf{L}} \times \mathbf{S}_{\mathbf{m}}$ 

其中, Rmax 为芯片表面最大结合容量,在蛋白测试中通常代入100 RU。analyte MW 和 ligand MW 分别为流动相蛋白和配体核酸的分子量,Sm 为化学计量比,未知时默认为 1,RL 为配体 偶联量。实验时实际偶联量为 3-5 倍的 RL。以本实验为例,蛋白分子量为39.4 kD,核酸分子量 为14.5 kD,则 RL 为 36.8 RU,核酸的目标偶联量为100-200 RU。

#### 3、配体偶联

1) 根据 Assay Workflow 界面的内容,点击 Immoblization 下 Run,打开配体偶连程序。在跳出 的对话框中,将 prime before run 前的 "√" 去掉,在 Flow cell 2 中, method 默认 SA-biotin capture, 核对 ligand 配体名称,选用 Aim for immobilized level, Target level 输入配体目标偶联量,为 100 RU,点击 Next。

| X- Immobilization - Setup     |                  | ×                                        |
|-------------------------------|------------------|------------------------------------------|
| Chip type: SA                 | -                | ☑ Prime before run                       |
| Flow cell 1                   |                  |                                          |
| Immobilize flow cell <u>1</u> | Method:          | Y                                        |
| Aim for immobilized level     | Ligand solution: |                                          |
| Specify contact time          |                  |                                          |
|                               |                  |                                          |
| Flow cell 2                   |                  |                                          |
| Immobilize flow cell 2        | Method:          | X SA-biotin capture                      |
| Aim for immobilized level     | Ligand solution: | Ligand A                                 |
| Specify contact time          | Target level:    | 100 (RU)                                 |
|                               |                  |                                          |
|                               |                  |                                          |
| <u>H</u> elp                  |                  | < <u>Back</u> <u>N</u> ext> <u>Close</u> |

2) 在 Rack Positions 界面,保持样品默认位置或自行通过鼠标拖拽到指定位置。点击 Load Samples,取出样品架,按图所示放入相应的样品和试剂,体积略大于图示体积即可。放入样品架,点击 next,保存方法和结果文件后,点击 start。保存 method 与r esult 文件到文件夹(可默认或自行指定,注意本指南中所有要保存的指定文件夹与文件名不可有中文字符)。系统正式自动运行 Immobilization 程序。



3) 偶联结束后,软件自动生成并显示偶联结果,确定偶联量后,即可进入下一步实验,无需等 待基线平衡。

## (三)样品检测过程

1、根据 Assay Workflow 界面的内容,点击 Run Kinetics/Affinity Assay 下 Run,打开样品检测程序。在跳出的对话框中,Kinetics type 选择 Multi-cycle,点击 Next。

| X Kinetics/Affinity - Injection Sequen | ce X                                                     |
|----------------------------------------|----------------------------------------------------------|
| Detection                              | Chip                                                     |
| Elow cell: 1,2 V Reference s           | ubtraction Chip type: SA 💌                               |
| Kinetics type                          |                                                          |
| Single-cycle   Mul <u>t</u> i-cycle    |                                                          |
| Injections in analysis cycle           |                                                          |
| Flow Cell 1 Flow Cell 2                | 2                                                        |
| Sample                                 | Ligand capture                                           |
| L L                                    |                                                          |
| Regeneration                           | ✓ <u>Sample</u>                                          |
|                                        |                                                          |
|                                        | <u>         R</u> egeneration <u>         1         </u> |
|                                        |                                                          |
|                                        |                                                          |
|                                        |                                                          |
|                                        |                                                          |
|                                        |                                                          |
|                                        |                                                          |
|                                        |                                                          |
|                                        |                                                          |
|                                        |                                                          |
|                                        |                                                          |
|                                        |                                                          |
|                                        |                                                          |
| Help                                   | < <u>B</u> ack <u>N</u> ext > <u>C</u> lose              |

2、在 System Preparation 对话框中,将 prime before run 前的 "√" 去掉,Startup 部分中 Solution 名称填 HBS-EP+,其余不变,点击 Next。

| X Kinetics/Affinity - System Preparation                 |
|----------------------------------------------------------|
| Prime V Prime before run                                 |
| Conditioning<br>Run conditioning cycle                   |
| Startup<br><u>R</u> un startup cycles                    |
| Solution: HBS-EP+                                        |
| Number of c <u>v</u> cles: 3                             |
| <u>H</u> elp < <u>B</u> ack <u>N</u> ext > <u>C</u> lose |

3、在 Kinetics/Affinity-Injection Parameters 界面下,在 Sample 一栏中 Contact time 为 180s, Dissociation time 为300s, Regeneration 中 solution 为 0.5% SDS, Contact time 为 30s。点击Next。

| Kinetics/Affinity - Injection Parameters |               |                         |                              |  |  |  |  |  |
|------------------------------------------|---------------|-------------------------|------------------------------|--|--|--|--|--|
| Sample<br>C <u>o</u> ntact time:         | 180 (s)       | Dissociation time: 300  | (s)                          |  |  |  |  |  |
| First regeneration                       | n<br>0.5% SDS |                         |                              |  |  |  |  |  |
| Contact time:                            | 30 (s)        | Stabilization period: 0 | (s)                          |  |  |  |  |  |
| <u>H</u> elp                             |               | < <u>B</u> ack          | <u>N</u> ext > <u>C</u> lose |  |  |  |  |  |

4、在 Kinetics/Affinity-Samples 界面中,填写分析物信息: Sample id 填写样品名称, MW(Da)填写分子量,一个 Concentration 为质量浓度,另一个 Concentration 为摩尔浓度,样品浓度由低到高填写(质量浓度或摩尔浓度填一种即可,另一种系统会自动计算)。注意要设置重复浓度和零浓度。具体填写如下:

|    | Eample id | MW (Da)  | Concentration |   |       |   |
|----|-----------|----------|---------------|---|-------|---|
|    | Sample lu | MAA (Da) | nM .          | • | µg/ml | • |
| 1  | Lac1      |          | 0             |   |       |   |
| 2  | Lac1      |          | 0.78125       |   |       |   |
| 3  | Lac1      |          | 1.5625        |   |       |   |
| 4  | Lac1      |          | 3.125         |   |       |   |
| 5  | Lac1      |          | 6.25          |   |       |   |
| 5  | Lac1      |          | 12.5          |   |       |   |
| 7  | Lac1      |          | 25            |   |       |   |
| B  | Lac1      |          | 50            |   |       |   |
| 9  | Lac1      |          | 100           |   |       |   |
| 10 | Lac1      |          | 200           |   |       |   |
| 11 | Lac1      |          | 0             |   |       |   |
| 12 | Lac1      |          | 3.125         |   |       |   |
| 13 | Lac1      |          | 0             |   |       |   |
| 14 |           |          |               | 1 |       |   |
|    |           |          |               |   |       |   |

5、点击 Next 进入 Kinetics/Affinity-Rack Position 界面,保持默认位置或自行通过鼠标拖拽到指 定位置。若要合并相同样品,点开 Menu 后选 Automatic Positioning, pooling 选项选择 yes, 点击 OK。

| X Kinetics/Affinity - Rack Positions |          | -              |                 |                |                     | - • • ×               |
|--------------------------------------|----------|----------------|-----------------|----------------|---------------------|-----------------------|
|                                      | Position | Volume<br>(µl) | Content         | Туре           | Sample 1<br>MW (Da) | Sample 1<br>Conc (nM) |
|                                      | 1        | 375            | Lac1            | Sample         |                     | 0                     |
|                                      | 2        | 135            | Lac1            | Sample         |                     | 0.78125               |
|                                      | 3        | 135            | Lac1            | Sample         |                     | 1.5625                |
| 5 40 - 2                             | 4        | 255            | Lac1            | Sample         |                     | 3.125                 |
|                                      | 5        | 135            | Lac1            | Sample         |                     | 6.25                  |
|                                      | 6        | 135            | Lac1            | Sample         |                     | 12.5                  |
|                                      | 7        | 135            | Lac1            | Sample         |                     | 25                    |
|                                      | 8        | 135            | Lac1            | Sample         |                     | 50                    |
|                                      | 9        | 135            | Lac1            | Sample         |                     | 100                   |
|                                      | 10       | 135            | Lac1            | Sample         |                     | 200                   |
|                                      | 11       | 375            | HBS-EP+         | Startup        |                     |                       |
|                                      | 12       | 495            | 0.5% SDS        | Regeneration   |                     |                       |
|                                      | H20      | Full           | Deionized water | Water          |                     |                       |
| Help Menu  Load Samples              |          |                |                 | < <u>B</u> ack | Next >              | <u>C</u> lose         |

6、点击 Load Samples,取出样品架,按照屏幕显示准备相应样品,并按指定位置放置。蛋白 B 用运行缓冲液 HBS-EP+进行倍比稀释。放入样品架,点 Next 后,对方法进行保存,再对数据进 行保存。点击 start,仪器便会开始自动运行。

#### (四)实验结果分析

1) 打开 Biacore<sup>™</sup> X100 Evaluation Software,点击 <sup>▶</sup>,找到保存的结果文件。点击左侧 Plot 中的 Binding to reference,检查各个点是否趋于一致或小于 binding level 中对应响应值的 20%,检查 binding level 各个点的响应值是否存在明显的浓度依赖。如是,直接跳到下一步。注:若 Binding to reference 各个点的响应值也存在浓度依赖且大于 binding level 中对应响应值的 20%,即存在 非特异性结合。此时可尝试提高运行缓冲液中盐离子浓度或提高 P20(货号: BR-1000-54)浓度 不超过 1%,或者调换配体与分析物,将蛋白偶联在 CM5 芯片上,将核酸作为分析物。若 baseline 中各个点的响应值上飘,可适当延长再生溶液 0.5% SDS 的进样时间。

2) 点击上方中间位置的 Kinetics/Affinity,在下拉栏里点击 Surface bound,在跳出的窗口中选择 不同的浓度进行拟合。选择标准为:如果最高浓度响应值大于 500 RU,选最低的 5-6 个浓度分 析,如果最高浓度响应值小于 50 RU,选最高的 5-6 个浓度进行数据分析,介于两者中间,随意 选 5-6 个连续的浓度进行分析。不需要的浓度,可在样品浓度表格中将此浓度前的对号去掉即 可。



3) 点击右下角 Next,再点击右下角 Kinetics(当传感图为"快上快下"时,选 Affinity),点击左 上角 Fit 进行数据拟合,点击右下角 Finish 完成。

4) 在下方数据显示栏里, Quality Control 的前三项都亮绿灯表示检测数据好;如果亮黄灯,表示数据能接受;如果亮红灯,表示数据不能接受,需要优化实验。数据显示栏的 Report 中显示具体的分析数据,包括动力学数据 ka、kd,亲和力数据 Kb等。以本实验为例,动力学数据: ka =  $3.947 \times 10^5$  M<sup>-1</sup>s<sup>-1</sup>, kd =  $1.984 \times 10^{-3}$  s<sup>-1</sup>,亲和力: KD =  $5.025 \times 10^{-9}$  M。

5) 将鼠标放在图上,点击右键可以直接 copy graph 用于文章发表,也可以右键点击 export curve, 导出 txt 文本后自行用第三方软件作图。



#### Quality Control Report Residuals Parameters

| Curve             | ka (1/Ms) | kd (1/s) | KD (M)   | Rmax (RU) | Conc (M) | tc       | Flow (ul/min) | kt (RU/Ms) | RI (RU) | Chi <sup>2</sup> (RU <sup>2</sup> ) | U-value |
|-------------------|-----------|----------|----------|-----------|----------|----------|---------------|------------|---------|-------------------------------------|---------|
|                   | 3.947E+5  | 0.001984 | 5.025E-9 | 84.38     |          | 2.951E+7 |               |            |         | 0.298                               | 1       |
| Cycle: 7 3.125 nM |           |          |          |           | 3.125E-9 |          | 30.00         | 9.171E+7   | -0.1137 |                                     |         |
| Cycle: 8 6.25 nM  |           |          |          |           | 6.250E-9 |          | 30.00         | 9.171E+7   | -0.1906 |                                     |         |
| Cycle: 9 12.5 nM  |           |          |          |           | 1.250E-8 |          | 30.00         | 9.171E+7   | 0.04952 |                                     |         |
| Cycle: 10 25 nM   |           |          |          |           | 2.500E-8 |          | 30.00         | 9.171E+7   | -0.3960 |                                     |         |
| Cycle: 11 50 nM   |           |          |          |           | 5.000E-8 |          | 30.00         | 9.171E+7   | 0.4268  |                                     |         |

## 如有问题,请拨打免费技术热线

## 请拨 400-810-9118

#### cytiva.com.cn

Cytiva 和 Drop 标识是 Global Life Sciences IP Holdco LLC 或其附属公司的注册商标。 © 2023 Cytiva 所有商品和服务的销售需遵守在 Cytiva 运营之供应商公司的销售条款和条件。

如需查看当地办公室的联系信息,请访问 : cytiva.com.cn/contact。

CY42497-02Feb24-HB

