

Biacore™X100 检测蛋白 与小分子相互作用

操作指南

cytiva.com.cn

01	实验目的	03
02	注释	03
03	实验使用机型、试剂和耗材	03
04	实验步骤	04
•	(一)仪器准备	04
	(一) 仪器准备 (二) 配体偶联	04 07
•	(一) 仪器准备 (二) 配体偶联 (三) 样品检测过程	04 07 09

Biacore™ X100 检测蛋白与小分子结合操作指南

一、实验目的

利用 Biacore[™] X100 系统和 CM5 芯片检测小分子与蛋白结合的动力学和亲和力数据。本实 验使用的小分子分子量为 400 Da,蛋白分子量为 20kD。若蛋白与小分子的分子量比大于 100,换用 CM7 芯片。

二、注释

注意事项:实验前请详细阅读该指南,并准备好相应实验用品。该指南仅供类似实验参考,用 户须根据实际样品来源、条件、目的调整各项实验参数。对于水溶性好的小分子,无需按照本 指南进行溶剂校正操作。

三、实验使用机型、试剂和耗材

1、本实验所用机型: Biacore[™] X100, 若为其他机型,请按照对应机型的操作说明进行调整, 或咨询 Biacore 产品专家。

2、CM5 芯片货号:BR100399(一片装),BR100012(三片装),29149604(十片装)。厂家为 Cytiva。

3、氨基偶联试剂盒。货号: BR-1000-50, 厂家为 Cytiva。

4、偶联缓冲液: 10mM 醋酸钠 pH4.0(货号: BR-1003-49),或 10mM 醋酸钠 pH4.5(货号: BR-1003-50),厂家为 Cytiva。

5、缓冲液: 10 x PBS-P+ (货号: 28-9950-84), 厂家为 Cytiva。

(也可扫描下方的二维码选择含上述 2/3/4 或 2/3/4/5 所有耗材的套餐)

含 CM5 芯片套餐

含 CM7 芯片套餐

6、分析纯 DMSO,去离子水(0.22 μm 膜过滤,若纯水仪已含该滤芯,可无需再次过滤直接使 用)。

7、蛋白: 尽量现制现用或现买现用, 浓度一般需大于 500 μg/ml。溶解液尽量不含Tris等带有伯 氨基团的成分。

8、小分子 LMW: 母液浓度建议大于 10 mM,体积在 50 μL 以上,纯度 >90%,溶在 100%DMSO 里。溶液中不要含有咪唑、蔗糖、甘油等高折光率物质。

9、其他耗材:无盖 1.5 ml EP 管(货号:BR-1002-87),橡胶瓶盖2型(货号:BR-1004-11),购买地为 Cytiva。

四、实验步骤

(一) 仪器准备

1、开机操作

1) 打开 Biacore[™] X100 系统和电脑的电源开关。Biacore [™]X100 的电源开关位于系统背面的中心。 初始化过程中前面板上的指示灯将全部亮起,当初始化准备就绪时, Power 指示灯处于亮起状态, Temperature 指示灯处于亮起或闪烁状态, Sensor chip指示灯处于熄灭或闪烁状态, Run 指示灯处于熄灭状态。

2) 打开 Biacore[™] X100 控制软件(Biacore[™] X100 control software), 在登录对话框中, 输入 用户名(默认用户名为 admin)和密码(默认密码为 administrator)并单击 OK。运行后软件会 自动和主机系统建立连接。

X- Biacore X100 Login		— X —
	Biacore X100 Control Version: 2.0.1 User name: admin Password:	Software
	Ī]
Biacore™ X100		
	Help OK Cancel	Options >>

3) 准备运行缓冲液。量取 50mL 10 x HBS-EP+ buffer、450mL 去离子水(已经 0.22 μm 膜过滤), 混匀后放入 500 mL 缓冲液瓶。

4) 设备开机后,即可使用,无需等待。

2、 缓冲液的放置

1) 将已经配制好的缓冲液放在 Biacore™ X100 系统左侧的托盘上。

2) 将两根缓冲液进液管插入至缓冲液瓶底部,并拧上专用的盖子。

3) 将 500mL 的废液瓶放置在 Biacore[™] X100 系统右侧的托盘上,并拧上专用的盖子。

3、芯片的放置

1) 打开仪器前面板上部的芯片舱门,点击工具条中的 按钮或选择 Tools 菜单中的 Undock Chip 选项,打开芯片舱门。

2) 如果已经有芯片在芯片舱内,点击工具条中的 按钮或选择 Tools 菜单中的 Undock Chip 选项, 完成芯片卸载后会显示 Dock Chip 对话框,同时仪器前面板的传感芯片指示灯会闪烁。拉出芯片 推杆,取出旧的芯片。(若芯片舱中没有芯片,此步直接跳过)

Biacore X100
This will undock the sensor chip
Help Undock Chip Cancel

3) 如果使用的是新芯片,选择 New Chip。在 Chip Type 的下拉菜单中选择对应的芯片种类(此 实验为 CM5 芯片),在 Chip Id 中填入和芯片相关的实验信息,Chip Iot No. 中可填入芯片批号 (选填)。如果是已经使用过的芯片,请选择 Reuse Chip,并在 Chip Id 下拉菜单中找到与之相 对应的芯片信息。

Dock Chip	×
<u> N</u> ew chip	<u> R</u> euse chip
New chip	
Chip type: Custom	•
Chip <u>i</u> d: 211220-	0956
Chi <u>p</u> lot no: (optional	
<u>H</u> elp	Dock Chip Cancel

4) 手持芯片,有字的一面朝上。按照芯片上的箭头方向,插入芯片,最后推入芯片推杆,关闭芯片舱门,点击 Dock Chip 完成芯片装载。

5) 点击 Dock Chip 按钮,芯片置入后系统将自动转入待机(Standby)状态。

6) 选择 Tools→Prime 命令,点击 Start。缓冲液会以较高的流速冲洗整个内部的流路系统,整个过程耗时 6-7 分钟。结束后,点击 Close,系统自动转入待机(Standby)状态。注意:当系统开机或更换缓冲液后,必须运行 Prime 程序。Prime 时缓冲液会冲洗整个流路系统,为下一步的实验做好准备。

4、放置样品架

1) Biacore[™] X100 的样品架为 Reagent Rack ,如下图所示。

Reagent Rack

2) 点击工具栏 🥘 按钮,或选择 Tool→Eject Rack,等待 Rack Locked 指示灯熄灭,取出样品架。

样品架的取出 / 放入方式

3)将样品架对准卡槽放入样品舱,并确保其与样品架基座贴合良好,表明样品架已经处于正确 位置并锁定。

4) 点击 Load Samples 对话框中的 OK, 完成样品舱装载。

(二) 配体偶联

1、开机操作

1)点击 Create Assay Workflow 下方的 Kinetics/Affinity,点击打开。在全新窗口,填写配体名称 Ligand name,选择配体类型,本实验选择 another protein。

X admin @ Biacore X100 Control Software	the Branchillery and	gen alla del activador		
File View Tools Window Help				
▋▏▜▘❶▖▎术▕				
Create Assay Workflow Create Assay Workflow Other Options Kinetics/Affinity Image: Binding Analysis				
Me Open/New Wizard Template	Plant of Sale			
Surface Preparation Name		Modified	Created By ^	
Modified: Today				

2)在跳出的对话框中, 将 prime before run 前的 "√" 去掉, 在 Flow cell 2 中, method 选用 amine 氨基偶联, 核对 ligand 配体名称,选用 specify contact time and flow rate 实现高偶联,按下表 输入 contact time,本次实验输入 900s,接着点 Next。

表一偶联量与配体工作浓度、进样时间及芯片类型对照表				
分子量比	< 50	50-100	> 100	
(蛋白/小分子)	<u> </u>	50~100	> 100	
芯片类型	CN	CM7		
目标偶联量	~8000 RU	~15000 RU	>20000 RU	
配体工作浓度	20µg/mL	40 <u>µg</u> /mL	50 ug/mL	
contact time	600s	900s	900s	

X- Immobilization - Setup		Transmiss .	×
Chip type: CM5	Ŧ	☑ Prime before run	
Flow cell 1			
Immobilize flow cell <u>1</u>	Method:		·
 Aim for immobilized level 	Ligand solution:		
Specify contact time			
Flow cell 2			_
Immobilize flow cell <u>2</u>	Method:	X Amine	•
Aim for immobilized level	Ligand solution:	Ligand A	
 Specify contact time 	Contact time:	900 (s)	
Help		< <u>B</u> ack	<u>N</u> ext> <u>C</u> lose

3) 在 Rack Positions 界面,保持样品默认位置或自行通过鼠标拖拽到指定位置。点击 Load Samples, 取出样品架,按图所示放入相应的样品和试剂,体积略大于图示体积即可,其中配体蛋白用 pH4.0 的醋酸钠稀释至 50 μg/mL(或按上表配制相应浓度)。放入样品架,点击 next,保存方法和结 果文件后,点击 start。保存 method 与 result 文件到文件夹(可默认或自行指定,注意本指南中 所有要保存的指定文件夹与文件名不可有中文字符)。系统正式自动运行 Immobilization 程序。

4) 偶联结束后,软件自动生成并显示偶联结果,本次实验偶联量为 500 RU(具体偶联量视实际 样品而定)。

5) 偶联结束后,即可进入下一步实验,无需等待基线平衡。

(三)样品检测过程

1) 配置运行缓冲液和溶剂校正曲线

小分子样品的运行缓冲液选用含 5% DMSO 的 1×PBS-P+(视样品溶解性可调整 DMSO 含量,最高不超过 10%)

取 105 mL 10×PBS-P+ 用去离子水稀释到 1L, 配成 1.05×PBS-P+。并按照下表,加入 DMSO,配置 5%DMSO 运行缓冲液和 4.5%、5.8% 溶剂校正母液(running buffer 中 DMSO 浓度并非绝对 5%,可视小分子样品溶解度情况而定,0-10% 均可。若 running buffer 中 DMSO 浓度变化,则 溶剂校正母液也相应变化,只要 cover running buffer 中 DMSO 浓度即可)。

	4.5% DMSO	5.8% DMSO	5.0% DMSO running buffer
1.05 x PBS-P+ 9.5 ml		9.5 ml	950 ml
100 % DMSO 0.45 ml		0.58 ml	50 ml
Final volume	~10 ml	~10 ml	1000

按照下表混合 4.5% 和 5.8% 母液配置 5%DMSO 浓度校正曲线(DMSO 标准液的数量并非一定要 8 个,通常 4-8 个均可。总体积也并非一定要 1.4ml,这些均可根据实际情况自行调整)

Buffer/Vial	1	2	3	4	5	6	7	8
4.5% DMSO	0	200	400	600	800	1000	1200	1400
5.8% DMSO	1400	1200	1000	800	600	400	200	0

2) 小分子样品准备

用不含 DMSO 的 1.05×PBS-P+ 缓冲液稀释 10 mM 小分子母液 20 倍,得到 500 μM 含 5%DMSO 的 1×PBS-P+ 中的小分子,再用配好的含 5% DMSO 的 Running Buffer 将分析物浓度稀释到 100 uM 作为最高进样浓度,向下对半稀释至少5个浓度梯度,例如100 μM,50 μM,25 μM,12.5 μM,6.25 μM,3.125 μM(根据实际样品亲和力强弱进行浓度梯度调整)。间隔设置一个重复浓度,增加一个 0 浓度。

(注意:图中 1.05×PBS-P+ buffer 不含 DMSO, running buffer 含 5% DMSO)

3) 在打开的 Biacore[™] X100 Control Software 里点击 Other Options,在弹出的选项卡中选择 Wizards, 打开预设实验模板。在 Open/New Wizard Template 的左边目标栏里点中 Custom Assay Wizard 后双击打开。

4) 在 Custom Assay Wizard-System Preparation 界面, Flow cell 选择 1, 2, 同时勾选 Reference substration, Chip type 选择 CM5, Evaluation purpose 选择 Kinetics/Affnity, 将 prime before run 前的 "√" 去掉, 点击 Next。

🗶 Custom Assay Wiza	rd - System Preparation	X
Detection <u>F</u> low cell: 1,2	✓ Reference subtraction	Chip Ch <u>i</u> p type: CM5 ▼
Purpose E <u>v</u> aluation purpose:	Kinetics/Affinity	
Prime Prime before run	Conditioning	e
Help	< <u>B</u> ack	Next > Close

5) 在 Cycle Definition 界面,点击 Cycle types 右侧的 new,新增一个循环,并点击 Rename 将分别将其命名为 solvent correction 与 analyte。选中 Cycle types 中的 solvent correction 后,在左下方 Available 选项框中点击 Solvent correction,点击中间 Add 六次,增加六个溶剂矫正命令。

Ke Custom Assay Wizard - Cycle Definition	
Cycle types solvent correction analyte	Ne <u>w</u> Dejete Rengme Copy
Commands in solvent correction Agailable Selected Sample Solvent correction 1 Sample Solvent correction 3 Solvent correction 5 Solvent correction 5 Solvent correction 6 Solvent correction 6	Settings for Solvent correction 1 The Solvent correction injection will be run for 30 seconds with a flow rate of 30 µ/min.
Help	< <u>Back</u> <u>N</u> ext> <u>Close</u>

6) 选中 Cycle types 中的 analyte 循环后,在左下方 Available 选项框中点击 Sample,点击中间 Add, 增加一个分析命令。点击 Selected 选项卡中的 Sample1,在其右侧可以修改结合解离时间、流速 等进样参数。本实验样品 Contact time 修改为 60s, Dissociation time 为120s,小分子通常无需 再生。其他项无需修改。勾选 Extra wash, Extra wash 用 50% DMSO 清除管路中残留的小分子 (extra wash 不流经芯片表面,不会影响配体活性)。点击两次 Next。

X Custom Assay Wizard - C	ycle Definition	
solvent correction analyte	Cycle types	Ne <u>w</u> Dejete Rename
Commands in analyte		Copy
Available Perpure Schapces Regeneration Solvent correction	Selected Sample 1	Sglution: Image: Contact lime: Single-cycle kinetics 60 Contact lime: 60 Dissociation time: 120 Il20 (s) Interview 30 Interview 120 Interview 120
Help		< <u>B</u> ack <u>N</u> ext > <u>C</u> lose

7) 在 Sample Table 界面, Concentration unit 选择 µM, 点击 Add Row 增加循环。前三个循环 Cycle Type为analyte, Cycle purpose为Startup, Solution 名称填入 PBS-P+。在实验浓度前后选择加入 两个循环的溶剂校正 Cycle Type 与 Cycle purpose 均选择 solvent correction。实验浓度部分 Cycle Type 为 analyte, Cycle purpose 为 Sample, Solution 填写样品名称, Conc 填写进样浓度(样品 浓度由低到高填写)。注意要设置重复浓度和零浓度。具体填写如下:

Custom Assay Wizard - Sample Table													
Conc	entration	n <u>u</u> ni	μM)	Add Row Remove Row								
	Cycle Type		Cycle Purpose			se	analyte						
ycle	olvent orrection	nalyte	tartup	olvent orrection	ample	Indefined	Solution	MW (Da)	Conc (µM)				
1	0	•	•	0	0	0	PBS-P+						
2	Õ	۲	o	Õ	Õ	Õ	PBS-P+						
3	Õ	۲	0	Õ	Õ	Õ	PBS-P+						
4	۲	0	0	\odot	0	0			8				
5	0	۲	0	0	۲	0	в	400	0				
6	0	۲	0	0	۲	0	В	400	3.125				
7	0	۲	0	0	\odot	0	В	400	6.25				
8	0	۲	0	0	\odot	0	В	400	12.5				
9	0	\odot	0	0	\odot	0	В	400	25				
10	0	۲	0	\bigcirc	\odot	0	В	400	50				
11	0	\odot	0	\circ	\odot	0	В	400	100				
12	0	\odot	0	\bigcirc	\odot	0	В	400	0				
13	0	۲	\bigcirc	0	\odot	0	В	400	12.5				
14	\odot	0	\bigcirc	\odot	\bigcirc	0							

8) 点击 Next 进入 Kinetics/Affinity-Rack Position 界面,保持默认位置或自行通过鼠标拖拽到指定 位置。若要合并相同样品,点开 Menu 后选 Automatic Positioning, pooling 选项选择 yes,点击 OK。

X Custom Assay Wizard - Rack Positions	1.5-			1.00.0		2 2	3
	Position	Volume (µl)	Content	Туре	Sample 1 MW (Da)	Sar Con	Â
	1	135	В	Sample	400	0	
	2	75	В	Sample	400	3.125	
	3	75	В	Sample	400	6.25	
5 HE . 12	4	135	В	Sample	400	12.5	
	5	75	В	Sample	400	25	
	6	75	В	Sample	400	50	Ξ
 	7	75	В	Sample	400	100	
	8	195	PBS-P+	Startup			
	9	567	50% DM50	Wash			
	10	Full	Solvent correction1	Solvent correction (buffer)			
	11	Full	Solvent correction2	Solvent correction (buffer)			
	12	Full	Solvent correction3	Solvent correction (buffer)			
	13	Full	Solvent correction4	Solvent correction (buffer)			
	14	Full	Solvent correction5	Solvent correction (buffer)			-
	•					4	
Help Menu Load Samples				< <u>B</u> ack <u>N</u>	ext >	<u>C</u> lose	

9) 点击 Load Samples,取出样品架,按照屏幕显示准备相应样品,放入样品体积略大于显示体 积即可。盖好橡胶盖防止挥发,并按指定位置放置。放入样品架,点 Next 后,对方法进行保存, 再对数据进行保存。点击 start,仪器便会开始自动运行。

(四)实验结果分析

1) 打开 Biacore[™] X100 Evaluation Software,点击,找到保存的结果文件。点击左侧 Plot 中的 Binding to reference,检查各个点是否趋于一致或小于 binding level 中对应响应值的 20%,再检查 binding level 各个点的响应值是否存在明显的浓度依赖。如是,直接跳到下一步。注:若 Binding to reference 各个点的响应值也存在浓度依赖且大于 binding level 中对应响应值的 20%,即存在非特异性结合。此时可尝试提高运行缓冲液中盐离子浓度或提高 P20(货号:BR-1000-54)浓度不超过 1%。若 baseline 中各个点的响应值上飘,可适当延长再生溶液的进样时间。

2) 点击 solvent correction 进行溶剂校正分析。溶剂校正曲线一般要求落在-500 到 +1000RU, 两条竖线落在矫正曲线范围内, 拟合的 Chi²小于 2。如果超出此范围较多, 多由于 DMSO 浓度 配置不准确造成。最后, 点击 OK。

3) 点击上方中间位置的 Kinetics/Affinity, 在下拉栏里点击 Surface bound。在 Kinetics/Affinity -Select Curves 界面的 Select evaluation mode 下面选择 Single mode, (若为多组实验结果,并 想批量处理,可选 batch mode)。在跳出的窗口中选择合适的、至少 5 个连续浓度进行拟合。 不需要的浓度,可在样品浓度表格中将此浓度前的对号去掉即可。Curve 选择 FC=2-1corr(或 FC=4-3corr)。

4) 点击右下角 Next,选择右下角 Affinity(当传感图为"时间依赖的动力学特征"时,选 Kinetics, 所以本实验也可用 kinetic 拟合),点击 Next,Model选择 Steady State Affinity,点击左上角 Fit 进行数据拟合,点击右下角 Finish 完成。经拟合,小分子 LMW 与该蛋白的亲和力K_D=4.618x10⁻⁵ M。 (对于亲和力拟合,K_D竖线最好落在样品浓度范围内,并尽量小于最高浓度的一半位置,若K_D 竖线>最高浓度,则可提高进样浓度梯度,或在上一步选择更高浓度的、至少5个连续浓度的 样品进行拟合。

5) 将鼠标放在图上,点击右键可以直接 copy graph 用于文章发表,也可以右键点击 export curve, 导出 txt 文本后自行用第三方软件作图

如有问题,请拨打免费技术热线

请拨 400-810-9118

关于 Cytiva 思拓凡

Cytiva (思拓凡) 是全球生命科学领域的先行者,是 Danaher (丹纳赫集团)旗 下独立运营公司。作为值得信赖的合作伙伴, Cytiva 积极携手学术及转化医 学领域的研究人员、生物技术开发者和制造商,专注于生物药物、细胞与基 因疗法以及以 mRNA为代表的一系列创新技术的研究,通过提升药物研发和 生物工艺的能力、速度、效率和灵活性,为惠及全球患者开发和生产变革性 药物和疗法。

欢迎访问cytiva.com.cn获取更多信息。

智荟专线: 400-810-9118 官微订阅号: Cytiva 官微服务号: CytivaChina

cytiva.com.cn

Cytiva 和 Drop 标识是 Global Life Sciences IP Holdco LLC 或其附属公司的注册商标。 © 2023 Cytiva 所有商品和服务的销售需遵守在 Cytiva 运营之供应商公司的销售条款和条件。 如需查看当地办公室的联系信息,请访问:cytiva.com.cn/contact。

CY42492-02Feb24-HB

